Home / Documentation / Architecture Guides / Microservices Architecture Guide

Microservices Architecture Guide

12 min read
Updated Jun 19, 2025

Introduction

Microservices architecture is an approach to developing software applications as a suite of independently deployable, small, modular services. Each service runs in its own process and communicates through well-defined APIs.

Key Benefit: Microservices enable teams to develop, deploy, and scale services independently, improving agility and reducing time to market.

Monolithic vs Microservices

Aspect Monolithic Microservices
Deployment Single deployable unit Multiple independent services
Scaling Scale entire application Scale individual services
Technology Single technology stack Polyglot programming
Team Structure Large, centralized teams Small, autonomous teams
Failure Impact Can affect entire system Isolated to service
Complexity Simple deployment, complex codebase Complex deployment, simple services

Core Principles

Successful microservices architectures are built on fundamental principles:

  • Single Responsibility: Each service should have one reason to change
  • Autonomous Teams: Teams own their services end-to-end
  • Decentralized Governance: Services choose their own tech stack
  • Failure Isolation: Service failures don't cascade
  • Data Decentralization: Each service manages its own data
  • Smart Endpoints: Business logic in services, not middleware
  • Design for Failure: Assume everything will fail

Architecture Overview

A typical microservices architecture consists of multiple components working together:

┌─────────────────────────────────────────────────────────┐
│                    Client Applications                    │
│         (Web, Mobile, Desktop, Third-party)              │
└────────────────────────┬────────────────────────────────┘
                         │
┌────────────────────────▼────────────────────────────────┐
│                    API Gateway                           │
│     (Authentication, Routing, Rate Limiting)            │
└────┬────────┬────────┬────────┬────────┬──────────────┘
     │        │        │        │        │
┌────▼───┐ ┌─▼───┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐
│Service │ │ Svc │ │ Svc │ │ Svc │ │ Svc │
│   A    │ │  B  │ │  C  │ │  D  │ │  E  │
└────┬───┘ └──┬──┘ └──┬──┘ └──┬──┘ └──┬──┘
     │        │       │       │       │
┌────▼────────▼───────▼───────▼───────▼──┐
│         Service Mesh (Optional)         │
│    (Service Discovery, Load Balancing)  │
└─────────────────────────────────────────┘
     │        │       │       │       │
┌────▼───┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐
│  DB A  │ │ DB B│ │Cache│ │Queue│ │Store│
└────────┘ └─────┘ └─────┘ └─────┘ └─────┘

Key Components

  • API Gateway: Single entry point for all client requests
  • Service Registry: Dynamic service discovery and health checking
  • Configuration Service: Centralized configuration management
  • Circuit Breaker: Prevents cascading failures
  • Service Mesh: Infrastructure layer for service-to-service communication

Service Design

Designing microservices requires careful consideration of boundaries and responsibilities:

Service Boundaries

Domain-Driven Design Example yaml
# E-commerce platform service boundaries
services:
  - name: user-service
    responsibilities:
      - User registration and authentication
      - Profile management
      - Preferences and settings
    
  - name: product-service
    responsibilities:
      - Product catalog management
      - Inventory tracking
      - Product search and filtering
    
  - name: order-service
    responsibilities:
      - Order placement and management
      - Order status tracking
      - Order history
    
  - name: payment-service
    responsibilities:
      - Payment processing
      - Payment method management
      - Transaction history
    
  - name: notification-service
    responsibilities:
      - Email notifications
      - SMS notifications
      - Push notifications

Service Interface Design

RESTful API Design yaml
openapi: 3.0.0
info:
  title: User Service API
  version: 1.0.0
  
paths:
  /users:
    post:
      summary: Create a new user
      requestBody:
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/CreateUserRequest'
      responses:
        '201':
          description: User created successfully
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/User'
                
  /users/{userId}:
    get:
      summary: Get user by ID
      parameters:
        - name: userId
          in: path
          required: true
          schema:
            type: string
      responses:
        '200':
          description: User found
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/User'

Service Communication

Microservices communicate through various patterns and protocols:

Synchronous Communication

REST Client with Circuit Breaker javascript
const CircuitBreaker = require('opossum');
const axios = require('axios');

class UserServiceClient {
  constructor() {
    const options = {
      timeout: 3000,
      errorThresholdPercentage: 50,
      resetTimeout: 30000
    };
    
    this.breaker = new CircuitBreaker(this.callUserService, options);
    
    this.breaker.on('open', () => 
      console.log('Circuit breaker is open'));
    this.breaker.on('halfOpen', () => 
      console.log('Circuit breaker is half-open'));
    this.breaker.on('close', () => 
      console.log('Circuit breaker is closed'));
  }
  
  async getUser(userId) {
    return this.breaker.fire(userId);
  }
  
  async callUserService(userId) {
    const response = await axios.get(
      `http://user-service:8080/users/${userId}`,
      {
        timeout: 2000,
        headers: {
          'X-Request-ID': generateRequestId(),
          'X-Caller-Service': 'order-service'
        }
      }
    );
    return response.data;
  }
}

Asynchronous Communication

Event-Driven Architecture javascript
// Event Publisher
class OrderService {
  async createOrder(orderData) {
    // Create order in database
    const order = await this.orderRepository.create(orderData);
    
    // Publish order created event
    await this.eventBus.publish('order.created', {
      orderId: order.id,
      userId: order.userId,
      items: order.items,
      total: order.total,
      timestamp: new Date().toISOString()
    });
    
    return order;
  }
}

// Event Consumer
class InventoryService {
  constructor() {
    this.eventBus.subscribe('order.created', this.handleOrderCreated);
  }
  
  async handleOrderCreated(event) {
    console.log(`Processing order ${event.orderId}`);
    
    // Update inventory
    for (const item of event.items) {
      await this.inventoryRepository.decrementStock(
        item.productId, 
        item.quantity
      );
    }
    
    // Publish inventory updated event
    await this.eventBus.publish('inventory.updated', {
      orderId: event.orderId,
      items: event.items,
      timestamp: new Date().toISOString()
    });
  }
}

Data Management

Each microservice should manage its own data to ensure loose coupling:

Database per Service Pattern

  • Each service owns its database schema
  • No direct database access between services
  • Data is accessed only through service APIs
  • Choose the right database for each service's needs

Data Consistency Patterns

Saga Pattern

Manage distributed transactions across multiple services using choreography or orchestration.

Learn more →

Event Sourcing

Store all changes as a sequence of events, enabling audit trails and temporal queries.

Learn more →

CQRS

Separate read and write models for optimized queries and command processing.

Learn more →

Deployment Patterns

Microservices can be deployed using various strategies:

Container Orchestration with Kubernetes

Kubernetes Deployment yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: user-service
  labels:
    app: user-service
spec:
  replicas: 3
  selector:
    matchLabels:
      app: user-service
  template:
    metadata:
      labels:
        app: user-service
    spec:
      containers:
      - name: user-service
        image: myregistry/user-service:v1.0.0
        ports:
        - containerPort: 8080
        env:
        - name: DB_HOST
          valueFrom:
            secretKeyRef:
              name: user-db-secret
              key: host
        resources:
          requests:
            memory: "256Mi"
            cpu: "250m"
          limits:
            memory: "512Mi"
            cpu: "500m"
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /ready
            port: 8080
          initialDelaySeconds: 5
          periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: user-service
spec:
  selector:
    app: user-service
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8080
  type: ClusterIP

Service Mesh Integration

  • Automatic service discovery and load balancing
  • Encrypted service-to-service communication
  • Advanced traffic management and routing
  • Distributed tracing and monitoring

Monitoring & Observability

Comprehensive monitoring is crucial for microservices architectures:

The Three Pillars of Observability

Metrics

Quantitative data about system performance: latency, throughput, error rates, and resource utilization.

Logs

Detailed records of events and errors, structured for easy searching and correlation across services.

Traces

End-to-end request flow across multiple services, showing latency and dependencies.

Distributed Tracing Implementation

OpenTelemetry Integration javascript
const { NodeTracerProvider } = require('@opentelemetry/node');
const { registerInstrumentations } = require('@opentelemetry/instrumentation');
const { HttpInstrumentation } = require('@opentelemetry/instrumentation-http');
const { ExpressInstrumentation } = require('@opentelemetry/instrumentation-express');

// Initialize tracing
const provider = new NodeTracerProvider();
provider.register();

registerInstrumentations({
  instrumentations: [
    new HttpInstrumentation(),
    new ExpressInstrumentation(),
  ],
});

// Middleware to add trace context
app.use((req, res, next) => {
  const span = tracer.startSpan('http_request', {
    attributes: {
      'http.method': req.method,
      'http.url': req.url,
      'http.target': req.path,
      'service.name': 'user-service'
    }
  });
  
  // Add trace ID to response headers
  res.setHeader('X-Trace-ID', span.spanContext().traceId);
  
  res.on('finish', () => {
    span.setAttributes({
      'http.status_code': res.statusCode
    });
    span.end();
  });
  
  next();
});

Common Patterns

Essential patterns for building resilient microservices:

Saga Pattern

Choreography-based Saga javascript
// Order Service - Initiates the saga
class OrderSaga {
  async createOrder(orderData) {
    const order = await this.orderService.create({
      ...orderData,
      status: 'PENDING'
    });
    
    // Start saga by publishing event
    await this.eventBus.publish('OrderCreated', {
      orderId: order.id,
      userId: order.userId,
      items: order.items,
      total: order.total
    });
    
    return order;
  }
  
  // Compensating transaction
  async cancelOrder(orderId, reason) {
    await this.orderService.updateStatus(orderId, 'CANCELLED');
    
    await this.eventBus.publish('OrderCancelled', {
      orderId,
      reason,
      timestamp: new Date()
    });
  }
}

// Payment Service - Participates in saga
class PaymentSaga {
  constructor() {
    this.eventBus.subscribe('OrderCreated', this.processPayment);
    this.eventBus.subscribe('InventoryReserved', this.confirmPayment);
    this.eventBus.subscribe('InventoryFailed', this.cancelPayment);
  }
  
  async processPayment(event) {
    try {
      const payment = await this.paymentService.charge({
        userId: event.userId,
        amount: event.total,
        orderId: event.orderId
      });
      
      await this.eventBus.publish('PaymentProcessed', {
        orderId: event.orderId,
        paymentId: payment.id,
        status: 'SUCCESS'
      });
    } catch (error) {
      await this.eventBus.publish('PaymentFailed', {
        orderId: event.orderId,
        reason: error.message
      });
    }
  }
}

API Gateway Pattern

  • Single entry point for all client requests
  • Request routing and load balancing
  • Authentication and authorization
  • Rate limiting and throttling
  • Request/response transformation
  • API versioning and deprecation

Bulkhead Pattern

Isolate resources to prevent cascading failures:

Thread Pool Isolation java
@Component
public class PaymentServiceClient {
    private final ExecutorService paymentExecutor = 
        Executors.newFixedThreadPool(10); // Bulkhead of 10 threads
    
    private final ExecutorService inventoryExecutor = 
        Executors.newFixedThreadPool(5); // Bulkhead of 5 threads
    
    public CompletableFuture processPayment(PaymentRequest request) {
        return CompletableFuture.supplyAsync(() -> {
            // Payment processing logic
            return paymentService.process(request);
        }, paymentExecutor)
        .orTimeout(5, TimeUnit.SECONDS);
    }
    
    public CompletableFuture checkInventory(String productId) {
        return CompletableFuture.supplyAsync(() -> {
            // Inventory check logic
            return inventoryService.check(productId);
        }, inventoryExecutor)
        .orTimeout(3, TimeUnit.SECONDS);
    }
}

Best Practices

Follow these practices for successful microservices implementations:

Design Best Practices

  • Design services around business capabilities
  • Keep services small and focused
  • Ensure services are independently deployable
  • Use domain-driven design principles
  • Implement proper API versioning
  • Document all service interfaces

Operational Best Practices

  • Implement comprehensive monitoring and logging
  • Use distributed tracing for debugging
  • Automate testing at all levels
  • Implement circuit breakers and retries
  • Use health checks and graceful shutdowns
  • Plan for service discovery and load balancing

Technology Stack

Spring Boot
Java microservices
Express.js
Node.js services
gRPC
High-performance RPC
Kubernetes
Container orchestration
Istio
Service mesh
Apache Kafka
Event streaming
Prometheus
Metrics monitoring
Jaeger
Distributed tracing
Remember: Microservices add complexity. Start with a monolith and evolve to microservices as your team and application grow.
Note: This documentation is provided for reference purposes only. It reflects general best practices and industry-aligned guidelines, and any examples, claims, or recommendations are intended as illustrative—not definitive or binding.